PIP3 inhibition of RGS protein and its reversal by Ca2+/calmodulin mediate voltage-dependent control of the G protein cycle in a cardiac K+ channel.

نویسندگان

  • Masaru Ishii
  • Atsushi Inanobe
  • Yoshihisa Kurachi
چکیده

Regulators of G protein signaling (RGS) accelerate intrinsic GTP hydrolysis on alpha subunits of trimeric G proteins and play crucial roles in the physiological regulation of G protein-mediated cell signaling. The control mechanisms of the action of RGS proteins per se are poorly clarified, however. We recently showed a physiological mode of action of a RGS protein in cardiac myocytes. The voltage-dependent formation of Ca2+/calmodulin facilitated the GTPase activity of RGS by an unidentified mechanism, which underlay the "relaxation" behavior of G protein-gated K+ (K(G)) channels. Here we report the mechanism which is the reversal by Ca2+/calmodulin of phosphatidylinositol-3,4,5,-trisphosphate (PIP3)-mediated inhibition of RGS. Purified RGS4 protein alone inhibited GTP-induced K(G) channel activity in inside-out patches from atrial myocytes. The inhibitory effect of RGS4 was reduced by PIP3 and restored by addition of Ca2+/calmodulin. The intracellular application of anti-PIP3 antibody abolished the RGS-dependent relaxation behavior of K(G) current in atrial myocytes. This study, therefore, reveals a general physiological control mechanism of RGS proteins by lipid-protein interaction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phosphatidylinositol 3,4,5-trisphosphate and Ca2+/calmodulin competitively bind to the regulators of G-protein-signalling (RGS) domain of RGS4 and reciprocally regulate its action.

RGS (regulators of G-protein signalling) are a diverse group of proteins, which accelerate intrinsic GTP hydrolysis on heterotrimeric G-protein a subunits. They are involved in the control of a physiological behaviour known as 'relaxation' of G-protein-gated K+ channels in cardiac myocytes. The GTPase-accelerating activity of cardiac RGS proteins, such as RGS4, is inhibited by PtdIns(3,4,5)P3 (...

متن کامل

Effect of chronic morphine administration on Ca2+/Calmodulin-Dependent protein kinase IIα activity in rat locus coeruleus and its possible role in morphine dependency

Introduction: The aim of this study was to assess the effect of Ca2+/calmodulin-dependent kinase IIα (CaMKIIα) inhibitor (KN-93) injection into the locus coeruleus (LC) on the modulation of withdrawal signs. We also sought to study the effect of chronic morphine administration on CaMKIIα activity in the rat LC. Methods: The research was based on behavioral and molecular studies. In the behav...

متن کامل

Ca(2+) elevation evoked by membrane depolarization regulates G protein cycle via RGS proteins in the heart.

Regulators of G protein signaling (RGS), which act as GTPase activators, are a family of cytosolic proteins emerging rapidly as an important means of controlling G protein-mediated cell signals. The importance of RGS action has been verified in vitro for various kinds of cell function. Their in situ modes of action in intact cells are, however, poorly understood. Here we show that an increase i...

متن کامل

Ca Elevation Evoked by Membrane Depolarization Regulates G Protein Cycle via RGS Proteins in the Heart

Regulators of G protein signaling (RGS), which act as GTPase activators, are a family of cytosolic proteins emerging rapidly as an important means of controlling G protein–mediated cell signals. The importance of RGS action has been verified in vitro for various kinds of cell function. Their in situ modes of action in intact cells are, however, poorly understood. Here we show that an increase i...

متن کامل

The effect of stress and glucocorticoids on modulation of pain in mice: Interaction with activation of voltage dependent Ca2+ channel

Previous studies indicated that stress and glucocorticoids have modulatory effects on acute pain. The aim of present study was to determine the interaction between stress and glucocorticoids with activation of voltage dependent Ca2+ channel on modulation of acute pain in mice. Male albino mice (25-30 g) were used for this experiment. Tail flick and hot plate were used for evaluation of analgesi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 99 7  شماره 

صفحات  -

تاریخ انتشار 2002